新闻中心

核心软硬件全部自主研发生产,团队十年成熟行业背景

软土地基施工中打桩工程常见的问题和处理方法


软土地基施工中打桩工程常见的问题和处理方法

 

在软土地区,当基底的土是软土时,建筑物很少采用浅基础。仅当基础设置在厚的硬壳层上,以及其下的软土的厚度几乎是均匀的,且下卧的软粘土的应力增量小,而应力分布又均匀,以致压缩性粘土层的固结所引起的建筑物的平均沉降和差异沉降能被允许时,才能选用这类不打桩的基础。因此,在软土地区除了应用各类灌注桩外,通常采用打入式的预制混凝土桩、钢桩。

 

由于软土的工程地质特性,打桩过程中往往引起种种影响和危害,如:打桩时的应力作用使桩身发生屈服或断裂,土的抗剪强度效应,使高灵敏度软粘土沿桩身表面向上溢出,孔隙水压力的变化使地面产生纵向裂缝,影响桩群四周的稳定性,桩周土侧向位移、地面隆起等。

 

智能打桩系统

 

打桩时产生的桩身拉应力影响


打桩系统由垫板(块)、锤垫、桩帽和专用于混凝土桩或钢桩的桩垫组成,这个系统模拟成两个非线性弹簧和一个质量块。当桩锤锤击桩顶时,在桩顶产生压应力波沿桩身由上向下传播,它的最大强度主要取决于桩锤的锤击速度、锤重、桩锤的效率、锤垫的刚度和恢复系数等。有效锤击能量通过式1计算:式中: 桩锤的效率,其值在0~1之间, 考虑在打桩系统(包括桩帽、锤垫、桩垫)中的能量损失系数, 桩锤的额定能量。

 

锤击最大应力与桩锤系统的有效锤击能量有关。研究应力波的形状和强度的影响因素。由于应力波沿着桩身传播以及能量在土中的损失而减少了振幅。桩身阻尼一般为0.015~0.020 s/m,软粘土中阻尼一般约为0.5~1% s/m。

 

在软土打桩过程中,由于桩端为软土层,初始压应力波在桩端处以反射形成拉应力波向上传播。在采用锤重轻和落距大时,桩端部分会产生高的张拉应力,反射的张拉应力波超过限值时会使钢筋产生屈服和桩身接头脱落,桩身薄弱部分产生断裂等。在实际工程中,会导致桩身发生屈服或断裂,严重影响桩身的完整性及其承载能力。

 

为了减少打桩过程中拉应力波的影响,在工程打桩试验阶段,应进行一定量的打桩监控分析,选择适宜的锤重、落距、锤垫等,监测锤击系统作用下桩身的最大拉应力和最大压应力。打桩工程中也有必要进行抽样监测桩身的拉应力,防止拉应力作用下桩身接头脱节,桩身屈服或断裂带来的严重工程隐患。如图1桩身接头处脱开的应力监测曲线,有较大的拉应力存在。


 
打桩时软土抗剪强度效应影响


打桩时自桩侧面外1~2倍桩径的区域内的软土受到部分重塑,由此引起的高孔隙水压力可能到达或甚至局部超过了总覆盖压力。测试结果指出,含水量的减少会使桩周土密贴桩身,所以拔桩时桩身通常裹着一层薄的坚硬粘土。这层再固结的粘土层,特别是对高灵敏度的原状土,对桩传递荷载到桩周土,和对桩的沉降可能具有很大的影响。打桩时所引起的高孔隙水压力和土的抗剪强度的减少是引起某些滑坡的直接或部分的原因。

 

对含有薄砂层时的软粘土特别有影响,抗剪强度已减少到50%。打桩后重塑粘土的抗剪强度增加非常快。打桩时的另一迹象是打桩阻力的变化,即使在比较短的停歇时间。如更换桩帽上的桩垫或接桩就有明显的变化。这时为了“激发”桩,一般要求先连打几击。抗剪强度在打桩时降低,后来随着时间提高,在桩身外1~2倍桩径的区域内抗剪强度降低了,这个区域内粘土不能恢复到初始的抗剪强度,群桩中抗剪强度的降低会在较远的距离发生。

 

影响土的重塑因素有:如桩长、打桩的方法和粘土的性质,而主要的是土的灵敏度。对某些超灵敏度的粘土,打桩时重塑后的抗剪强度能够低到使粘土沿着桩身向上流动,并且会溢到地表面上。

 

考虑打桩的影响,而在稳定性计算中将抗剪强度减少20%~30%,属较可靠的方法。在计算中一般假定打桩后1~3个月其土的抗剪强度相当于土的初始抗剪强度。对于静压预制桩,其抗剪强度的恢复非常快,试验表明打入桩后3~5天内其承载力值达到或超过设计的承载力值。

 

充分认识打桩时的软土抗剪强度效应影响,能有效分析某些工程滑坡的原因、土坡的稳定性,以及打桩后桩的承载力的恢复状况。对打桩引起的径向裂缝及超灵敏度的粘土溢出造成的施工困难,可预先进行详细的施工可行性设计,考虑超灵敏度的粘土溢出对桩的承载力的影响,防止过多溢出可进行一定量的降水处理。

 

智能打桩系统

 

打桩引起的孔隙水压力影响


打桩引起的高孔隙水压力一般随着粘土的抗剪强度的增加而增加,随着桩距的减小而增加,群桩的抗剪强度的增加一般大于单桩。打桩后的孔隙水压力值是总覆盖压力的3~4倍。软粘土的孔隙水压力最大增量相当于5~7 , 是粘土的不排水抗剪强度。该值与在理想弹塑性介质中无限长圆柱形孔扩张理论分析而推导出来的理论值是十分一致的。由于桩身表面处的孔隙水压力可能很高,以致打桩时会发生水力劈裂和打桩周围产生一组径向的裂缝。

 

这些径向裂缝使超孔隙水压力迅速消散。当桩周孔隙水压力相当于土中的初始侧向有效应力时,径向裂缝就会闭合。此后,孔隙水压力的消散就会变慢。排水主要是离开桩朝径向流动,打桩引起的高孔隙水压力会影响桩群四周范围内的稳定性,特别是在层状的粘土中。

 

为了有效控制打桩引起的孔隙水压力的影响,在桩身表面上附以排水板的方法,在打桩时可减少孔隙水压力。试验数据表明由于排水而减少了初始孔隙水压力50%。也可通过预钻孔的方法进行减少打桩时的孔隙水压力。

 

打桩引起的地面隆起问题


打桩可能引起较大的地面隆起,特别在桩距很小和桩长很大时尤其如此。沿着桩的上部向上的力超过了桩的下部拔出的阻力时,地面隆起能将邻桩抬起。由于打桩时孔隙水压力的迅速消散和土的固结,以及部分饱和土内的气体压缩等,隆起土的总体积常常明显地少于桩的总体积。在深坑开挖中,当桩的间距比较小的时候(少于4~5倍桩径),通常坑面隆起大约是0.5m,特别是对底面隆起安全系数取得比较低时,深坑开挖的隆起是比较大的。

 

在软土中桩的打入会增加土中的侧向压力,当桩距小时,则侧向压力的增加就大。应力增加所取决的因素有:粘土的压缩性和粘土的抗剪强度。在高灵敏度粘土中打桩时,土经重塑后的稠度变成类似重液的稠度。桩表面的侧压力就相当于重液的侧压力。打桩引起的土体隆起,使周围桩产生侧向位移及上拔现象,对桩身质量及承载能力的影响较大,桩身上拔使桩尖于桩端土产生间隙。

 

智能打桩系统

 

延伸阅读:配备智能打桩系统优势

 

随着新基建时代以及施工信息化时代的来到,现在传统施工方式逐步被替代,传统施工目前在人员成本、材料成本和机械成本都是越来越高的,施工成本不断地在攀升。其次现在对工程质量要求越来越严格的状态下,现有的质量控制的方法和质量数据溯源、质量监管方法存在严重不足,现有的施工管理和组织的方式也是严重滞后于施工流程,包括施工工艺,以及现在信息化的状态。

 

那么在这两个难点上我们采用北斗导航定位系统、各种传感器、数传终端等物联网手段获取工程施工过程信息,上传到云平台,保证数据安全,并用北斗定位系统和BIM技术对工程进行精确设计和模拟,减少施工失误和重复施工。实现工程可视化智能管理,以提高工程管理信息化水平,改善工程质量。

 

我们对现有的桩基进行了信息化的改造,这里核心的改造的传感器还是北斗的高精度定位终端,分别安在桩机的不同的部位,同时也加装在其他的传感器,比如说电流传感器、桩基垂直深度监测的子单元,通过这种信息化改造,它就把传统的面向打桩的机械化设备变成了具有智能信息的智能化施工的装备,在施工的过程当中,我们对于桩长、垂直度、打桩的灌注量以及承载的负荷,都可以实时的监测。

 

系统主要实现以下核心功能:


利用北斗定位系统,实现钻机姿态调整与钻杆就位引导,代替传统的人工放样;
采用自动化监测手段,实现对施工过程中钻孔深度、桩身垂直度、提钻速率、钻机电流的实时监测,对孔深不足进行现场提示;
分析、判断终孔电流,对终孔电流不足的情况进行现场提示;
通过灌注量传感器,对拖泵灌注量进行监测,达到设计灌注量后,自动停止灌注,特别适合负桩灌注时节约成本混凝土用量。
开发后端管理平台,建立监测数据库,提供形象进度展示与质量管理功能,实现对指定数据的查询、分析与统计。
监测数据自动存储、自动续传,防断电丢失,操作简易,实现全天候作业;
数据格式规范化,监测设备能够有足够高的耐久性、抗震性。

桩身垂直度: 监测精度:±0.5° 验收标准:≤±1%
钻孔深度:   监测精度:±15mm+1ppm 验收标准:≤±10cm
平面位置:   监测精度:±10mm+1ppm 验收标准:≤±5cm
提钻速率:   监测精度:±0.02m/min

 

大家都在搜:智能打桩定位系统、智能压实度监测系统、智能路面摊铺系统、拌合站质量监管系统、智能测斜仪、智能表面沉降监测仪、地下水位监测系统、矿山预警监测系统公路边坡监测系统尾矿库监测系统数字化管理平台

 

 

北京天玑科技有限公司(以下简称天玑科技)是一家致力于北斗智慧工程应用的国家高新技术企业。

 

 

 

天玑科技转化中国水科院的科技创新成果,结合自身强大的研发实力,整合行业资源优势,汇聚资深创业团队,深耕行业应用需求,深入了解中国特色,为用户提供一整套智慧工程建设全流程解决方案。

 

天玑科技成立以来高速发展,创新性的将北斗技术应用到公路、铁路,水利、机场工程建设领域,以工程质量过程管控为核心,将隐蔽工程透明化,为业主和施工总包单位解决质量,安全、效率、管理等核心问题。已形成TJMC摊铺系统智能压实系统桩基信息化系统,TJ-Cloud变形边坡监测等系统产品,从终端到平台,硬件到软件,产品销售到全程技术服务为广大业主和施工总包方提供完善的北斗智慧工程方案。特别是基于北斗的道路工程质量信息化系统成熟应用于日照交发,武汉交投,中建四局,南宁绕城高速等项目中,京雄城际,江巷水库大坝,大兴机场沉降监测等项目中也已全线选用,积累了丰富的成功案例,得到业界高度肯定和赞许。

 

 

天玑科技已通过ISO9001质量体系,3A信用企业,国家、中关村双高新技术企业等认证,取得软件著作权10项,发明专利3项,是拓普康数字化施工产品核心代理商,已成为智慧工程领域的领军企业。

 

天玑星,是北斗七星的第三颗, 尊为禄存星。天玑,主理天上人间的财富,喻为财富之星,不断为用户创造价值,为业主提升管理,为业者提供保障,为行业积累财富。

 

天玑科技:北斗智慧工程系统方案专家 诚信,创新,专注,感恩

推荐新闻


北斗三天线一体化终端设备适用什么行业?

北斗三天线一体化终端以其高精度定位、可靠防护与适应性、高系统兼容性和便捷化设计等特点,在工程机械、物流、公共交通和金融押运等多个领域具有广泛的应用前景。随着技术的不断进步和应用场景的不断拓展,相信北斗三天线一体化终端将在未来发挥更加重要的作用,为各行业的智能化、高效化运行提供有力支持。


旋挖钻施工如何利用数字化提高质量

数字化技术的应用为旋挖钻施工质量的提升提供了有力支持。天玑科技IPS-200E旋挖钻信息化系统通过即时记录和同步监测重要施工参数,使得施工过程中的每一环节都能得到精准控制和优化。未来,随着数字化技术的不断发展和完善,我们可以期待其在旋挖钻施工领域发挥更加重要的作用,为工程建设的安全与稳定提供更加坚实的保障。


北斗GNSS接收机在智能摊铺系统起的作用

北斗GNSS接收机在智能摊铺系统中扮演着至关重要的角色。它通过提供高精度定位、实时导航以及数据记录与分析等功能,为智能摊铺系统的精确、高效和安全施工提供了有力支持。随着技术的不断发展和完善,北斗GNSS接收机将在智能摊铺系统中发挥更大的作用,推动道路施工行业的智能化和高效化发展。


北斗GNSS接收机在边坡变形监测项目的实际应用

北斗GNSS接收机在边坡变形监测项目中展现出了显著的应用效果。其高精度、高可靠性和实时性强的特点使得边坡变形监测更加准确、高效和及时。随着技术的不断进步和应用领域的拓展,我们可以期待北斗GNSS接收机在边坡变形监测以及其他相关领域发挥更大的作用,为工程安全和灾害预防提供有力支持。


沥青三大指标在线监测系统的优势与价值体现

沥青三大指标在线监测系统凭借其实时监测、自动化管理、数据整合分析等优势,为实验室管理、工作效率提升、质量控制与改进以及科研与应用发展等方面带来了显著的价值。


北斗定位智能摊铺压实系统的价值

北斗定位智能摊铺压实系统以其高精度定位、实时监测和数据分析等优势,为现代基础工程建设提供了重要的技术支持。它不仅能够提高施工效率和质量,降低施工成本,还能为项目管理提供有力支持,推动基础工程建设向更高水平迈进。